Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
2.
Nat Aging ; 3(6): 722-733, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2322588

ABSTRACT

Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.


Subject(s)
COVID-19 , Humans , Aged , Phylogeny , COVID-19/epidemiology , SARS-CoV-2/genetics , Nursing Homes , Vaccination , Disease Outbreaks/prevention & control
3.
Euro Surveill ; 28(9)2023 03.
Article in English | MEDLINE | ID: covidwho-2277971

ABSTRACT

BackgroundLateral flow antigen-detection rapid diagnostic tests (Ag-RDTs) for viral infections constitute a fast, cheap and reliable alternative to nucleic acid amplification tests (NAATs). Whereas leftover material from NAATs can be employed for genomic analysis of positive samples, there is a paucity of information on whether viral genetic characterisation can be achieved from archived Ag-RDTs.AimTo evaluate the possibility of retrieving leftover material of several viruses from a range of Ag-RDTs, for molecular genetic analysis.MethodsArchived Ag-RDTs which had been stored for up to 3 months at room temperature were used to extract viral nucleic acids for subsequent RT-qPCR, Sanger sequencing and Nanopore whole genome sequencing. The effects of brands of Ag-RDT and of various ways to prepare Ag-RDT material were evaluated.ResultsSARS-CoV-2 nucleic acids were successfully extracted and sequenced from nine different brands of Ag-RDTs for SARS-CoV-2, and for five of these, after storage for 3 months at room temperature. The approach also worked for Ag-RDTs for influenza virus (n = 3 brands), as well as for rotavirus and adenovirus 40/41 (n = 1 brand). The buffer of the Ag-RDT had an important influence on viral RNA yield from the test strip and the efficiency of subsequent sequencing.ConclusionOur finding that the test strip in Ag-RDTs is suited to preserve viral genomic material, even for several months at room temperature, and therefore can serve as source material for genetic characterisation could help improve global coverage of genomic surveillance for SARS-CoV-2 as well as for other viruses.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Belgium , Rapid Diagnostic Tests , COVID-19/diagnosis , SARS-CoV-2/genetics , Genomics , COVID-19 Testing
4.
Nat Commun ; 14(1): 1734, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2249587

ABSTRACT

Severe acute respiratory syndrome 2 Omicron BA.4 and BA.5 are characterized by high transmissibility and ability to escape natural and vaccine induced immunity. Here we test the neutralizing activity of 482 human monoclonal antibodies isolated from people who received two or three mRNA vaccine doses or from people vaccinated after infection. The BA.4 and BA.5 variants are neutralized only by approximately 15% of antibodies. Remarkably, the antibodies isolated after three vaccine doses target mainly the receptor binding domain Class 1/2, while antibodies isolated after infection recognize mostly the receptor binding domain Class 3 epitope region and the N-terminal domain. Different B cell germlines are used by the analyzed cohorts. The observation that mRNA vaccination and hybrid immunity elicit a different immunity against the same antigen is intriguing and its understanding may help to design the next generation of therapeutics and vaccines against coronavirus disease 2019.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , mRNA Vaccines , Antibodies, Monoclonal , Adaptive Immunity , Germ Cells , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
5.
Nat Commun ; 14(1): 824, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2244271

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Subject(s)
Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antiviral Agents , Breakthrough Infections , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
mBio ; 14(1): e0281522, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193464

ABSTRACT

The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/genetics
7.
Cell Rep Med ; : 100850, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2184476

ABSTRACT

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.

8.
Front Pharmacol ; 13: 1072202, 2022.
Article in English | MEDLINE | ID: covidwho-2199120

ABSTRACT

Remdesivir was the first antiviral drug to be approved for the treatment of severe COVID-19; followed by molnupiravir (another prodrug of a nucleoside analogue) and the protease inhibitor nirmatrelvir. Combination of antiviral drugs may result in improved potency and help to avoid or delay the development of resistant variants. We set out to explore the combined antiviral potency of GS-441524 (the parent nucleoside of remdesivir) and molnupiravir against SARS-CoV-2. In SARS-CoV-2 (BA.5) infected A549-Dual™ hACE2-TMPRSS2 cells, the combination resulted in an overall additive antiviral effect with a synergism at certain concentrations. Next, the combined effect was explored in Syrian hamsters infected with SARS-CoV-2 (Beta, B.1.351); treatment was started at the time of infection and continued twice daily for four consecutive days. At day 4 post-infection, GS-441524 (50 mg/kg, oral BID) and molnupiravir (150 mg/kg, oral BID) as monotherapy reduced infectious viral loads by 0.5 and 1.6 log10, respectively, compared to the vehicle control. When GS-441524 (50 mg/kg, BID) and molnupiravir (150 mg/kg, BID) were combined, infectious virus was no longer detectable in the lungs of 7 out of 10 of the treated hamsters (4.0 log10 reduction) and titers in the other animals were reduced by ∼2 log10. The combined antiviral activity of molnupiravir which acts by inducing lethal mutagenesis and GS-441524, which acts as a chain termination appears to be highly effective in reducing SARS-CoV-2 replication/infectivity. The unexpected potent antiviral effect of the combination warrants further exploration as a potential treatment for COVID-19.

10.
Front Immunol ; 13: 909910, 2022.
Article in English | MEDLINE | ID: covidwho-2163010

ABSTRACT

Background: IgG anti-spike (S) antibodies arise after SARS-CoV-2 infection as well as vaccination. Levels of IgG anti-S are linked to neutralizing antibody titers and protection against (re)infection. Methods: We measured IgG anti-S and surrogate neutralizing antibody kinetics against Wild Type (WT) and 4 Variants of Concern (VOC) in health care workers (HCW) 3 and 10 months after natural infection ("infection", n=83) or vaccination (2 doses of BNT162b2) with ("hybrid immunity", n=17) or without prior SARS-CoV-2 infection ("vaccination", n=97). Results: The humoral immune response in the "vaccination" cohort was higher at 3 months, but lower at 10 months, compared to the "infection" cohort due to a faster decline. The "hybrid immunity" cohort had the highest antibody levels at 3 and 10 months with a slower decline compared to the "vaccination" cohort. Surrogate neutralizing antibody levels (expressed as %inhibition of ACE-2 binding) showed a linear relation with log10 of IgG anti-S against WT and four VOC. IgG anti-S corresponding to 90% inhibition ranged from 489 BAU/mL for WT to 1756 BAU/mL for Beta variant. Broad pseudoneutralization predicted live virus neutralization of Omicron BA.1 in 20 randomly selected high titer samples. Conclusions: Hybrid immunity resulted in the strongest humoral immune response. Antibodies induced by natural infection decreased more slowly than after vaccination, resulting in higher antibody levels at 10 months compared to vaccinated HCW without prior infection. There was a linear relationship between surrogate neutralizing activity and log10 IgG anti-S for WT and 4 VOC, although some VOC showed reduced sensitivity to pseudoneutralization.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Humans , Immunoglobulin G , SARS-CoV-2
11.
Nat Commun ; 13(1): 6644, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2106406

ABSTRACT

Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.


Subject(s)
COVID-19 , Viral Vaccines , Yellow Fever Vaccine , Cricetinae , Animals , Humans , SARS-CoV-2/genetics , Viral Vaccines/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
13.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: covidwho-2081913

ABSTRACT

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.


Subject(s)
COVID-19 , Pandemics , Humans , Belgium/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing
14.
Science ; 378(6620): 619-627, 2022 11 11.
Article in English | MEDLINE | ID: covidwho-2078696

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Immunologic Memory , Memory B Cells/immunology
15.
Front Cell Infect Microbiol ; 12: 989534, 2022.
Article in English | MEDLINE | ID: covidwho-2039664

ABSTRACT

Urtica dioica agglutinin (UDA) is a carbohydrate-binding small monomeric protein isolated from stinging nettle rhizomes. It inhibits replication of a broad range of viruses, including coronaviruses, in multiple cell types, with appealing selectivity. In this work, we investigated the potential of UDA as a broad-spectrum antiviral agent against SARS-CoV-2. UDA potently blocks transduction of pseudotyped SARS-CoV-2 in A549.ACE2+-TMPRSS2 cells, with IC50 values ranging from 0.32 to 1.22 µM. Furthermore, UDA prevents viral replication of the early Wuhan-Hu-1 strain in Vero E6 cells (IC50 = 225 nM), but also the replication of SARS-CoV-2 variants of concern, including Alpha, Beta and Gamma (IC50 ranging from 115 to 171 nM). In addition, UDA exerts antiviral activity against the latest circulating Delta and Omicron variant in U87.ACE2+ cells (IC50 values are 1.6 and 0.9 µM, respectively). Importantly, when tested in Air-Liquid Interface (ALI) primary lung epithelial cell cultures, UDA preserves antiviral activity against SARS-CoV-2 (20A.EU2 variant) in the nanomolar range. Surface plasmon resonance (SPR) studies demonstrated a concentration-dependent binding of UDA to the viral spike protein of SARS-CoV-2, suggesting interference of UDA with cell attachment or subsequent virus entry. Moreover, in additional mechanistic studies with cell-cell fusion assays, UDA inhibited SARS-CoV-2 spike protein-mediated membrane fusion. Finally, pseudotyped SARS-CoV-2 mutants with N-glycosylation deletions in the S2 subunit of the spike protein remained sensitive to the antiviral activity of UDA. In conclusion, our data establish UDA as a potent fusion inhibitor for the current variants of SARS-CoV-2.


Subject(s)
COVID-19 , Urtica dioica , Angiotensin-Converting Enzyme 2 , Anti-Retroviral Agents , Antiviral Agents/pharmacology , Carbohydrates , Europium , Humans , Receptors, Cell Surface , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Urtica dioica/metabolism , Viral Proteins
16.
Virus Evol ; 8(2): veac061, 2022.
Article in English | MEDLINE | ID: covidwho-1967910

ABSTRACT

The subfamily Orthoparamyxovirinae is a group of single-stranded, negative-sense RNA viruses that contains many human, animal, and zoonotic pathogens. While there are currently only forty-two recognized species in this subfamily, recent research has revealed that much of its diversity remains to be characterized. Using a newly developed nested PCR-based screening assay, we report here the discovery of fifteen orthoparamyxoviruses in rodents and shrews from Belgium and Guinea, thirteen of which are believed to represent new species. Using a combination of nanopore and sanger sequencing, complete genomes could be determined for almost all these viruses, enabling a detailed evaluation of their genome characteristics. While most viruses are thought to belong to the rapidly expanding genus Jeilongvirus, we also identify novel members of the genera Narmovirus, Henipavirus, and Morbillivirus. Together with other recently discovered orthoparamyxoviruses, both henipaviruses and the morbillivirus discovered here appear to form distinct rodent-/shrew-borne clades within their respective genera, clustering separately from all currently classified viruses. In the case of the henipaviruses, a comparison of the different members of this clade revealed the presence of a secondary conserved open reading frame, encoding for a transmembrane protein, within the F gene, the biological relevance of which remains to be established. While the characteristics of the viruses described here shed further light on the complex evolutionary origin of paramyxoviruses, they also illustrate that the diversity of this group of viruses in terms of genome organization appears to be much larger than previously assumed.

17.
Int J Infect Dis ; 123: 25-33, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966626

ABSTRACT

OBJECTIVES: We performed exhaled breath (EB) and nasopharyngeal (NP) quantitative polymerase chain reaction (qPCR) and NP rapid antigen testing (NP RAT) of SARS-CoV-2 infections with different variants. METHODS: We included immuno-naïve alpha-infected (n = 11) and partly boosted omicron-infected patients (n = 8) as high-risk contacts. We compared peak NP and EB qPCR cycle time (ct) values between cohorts (Wilcoxon-Mann-Whitney test). Test positivity was compared for three infection phases using Cochran Q test. RESULTS: Peak median NP ct was 11.5 (interquartile range [IQR] 10.1-12.1) for alpha and 12.2 (IQR 11.1-15.3) for omicron infections. Peak median EB ct was 25.2 (IQR 24.5-26.9) and 28.3 (IQR 26.4-30.8) for alpha and omicron infections, respectively. Distributions did not differ between cohorts for NP (P = 0.19) or EB (P = 0.09). SARS-CoV-2 shedding peaked on day 1 in EB (confidence interval [CI] 0.0 - 4.5) and day 3 in NP (CI 1.5 - 6.0). EB qPCR positivity equaled NP qPCR positivity on D0-D1 (P = 0.44) and D2-D6 (P = 1.0). It superseded NP RAT positivity on D0-D1 (P = 0.003) and D2-D6 (P = 0.008). It was inferior to both on D7-D10 (P < 0.001). CONCLUSION: Peak EB and nasopharynx shedding were comparable across variants. EB qPCR positivity matched NP qPCR and superseded NP RAT in the first week of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Respiratory System
18.
Transfusion ; 62(7): 1347-1354, 2022 07.
Article in English | MEDLINE | ID: covidwho-1932583

ABSTRACT

BACKGROUND: The therapeutic benefit of convalescent plasma (CP) therapy to treat COVID-19 may derive from neutralizing antibodies (nAbs) to SARS-CoV-2. To investigate the effects of antigenic variation on neutralization potency of CP, we compared nAb titers against prototype and recently emerging strains of SARS-CoV-2, including Delta and Omicron, in CP donors previously infected with SARS-CoV-2 before and after immunization. METHODS AND MATERIALS: Samples were assayed from previously SARS-CoV-2 infected donors before (n = 17) and after one (n = 43) or two (n = 71) doses of Astra-Zeneca or Pfizer vaccinations. Ab titers against Wuhan/wild type (WT), Alpha, Beta, and Delta SARS-CoV-2 strains were determined by live virus microneutralization assay while titers to Omicron used a focus reduction neutralization test. Anti-spike antibody was assayed by Elecsys anti-SARS-CoV-2 quantitative spike assay (Roche). RESULTS: Unvaccinated donors showed a geometric mean titer (GMT) of 148 against WT, 80 against Alpha but mostly failed to neutralize Beta, Delta, and Omicron strains. Contrastingly, high GMTs were observed in vaccinated donors against all SARS-CoV-2 strains after one vaccine dose (WT:703; Alpha:692; Beta:187; Delta:215; Omicron:434). By ROC analysis, reactivity in the Roche quantitative Elecsys spike assay of 20,000 U/mL was highly predictive of donations with nAb titers of ≥1:640 against Delta (90% sensitivity; 97% specificity) and ≥1:320 against Omicron (89% sensitivity; 81% specificity). DISCUSSION: Vaccination of previously infected CP donors induced high levels of broadly neutralizing antibodies against circulating antigenic variants of SARS-CoV-2. High titer donations could be reliably identified by automated quantitative anti-spike antibody assay, enabling large-scale preselection of high-titer convalescent plasma.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , Antigenic Variation , COVID-19/therapy , Humans , Immunization , Immunization, Passive , SARS-CoV-2 , Vaccination , COVID-19 Serotherapy
19.
Epidemics ; 40: 100589, 2022 09.
Article in English | MEDLINE | ID: covidwho-1930857

ABSTRACT

OBJECTIVES: To better understand the conditions which have led to one of the largest COVID-19 outbreaks in Belgian nursing homes in 2020. SETTING: A nursing home in Flanders, Belgium, which experienced a massive outbreak of COVID-19 after a cultural event. An external volunteer who dressed as a legendary figure visited consecutively the 4 living units on December, 4th and tested positive for SARS-CoV-2 the next day. Within days, residents started to display symptoms and the outbreak spread rapidly within the nursing home. METHODS: We interviewed key informants and collected standardized data from all residents retrospectively. A batch of 115 positive samples with a Ct value of < 37 by qRT-PCR were analyzed using whole-genome sequencing. Six months after the outbreak, ventilation assessment of gathering rooms in the nursing home was done using a tracer gas test with calibrated CO2 sensors. RESULTS: Timeline of diagnoses and symptom onsets clearly pointed to the cultural event as the start of the outbreak, with the volunteer as index case. The genotyping of positive samples depicted the presence of one large cluster, suggesting a single source outbreak. By the end of December, a total of 127 residents and 40 staff were diagnosed with SARS-CoV-2 since the beginning of the outbreak. The attack rate among residents was 77 % and significantly associated with presence at the event but not with close contact or mask wearing. The ventilation assessment showed a high background average CO2 level in four main rooms varying from 657 ppm to 846 ppm. CONCLUSIONS: Our investigation shows a rapid and widespread single source outbreak of SARS-CoV-2 in a nursing home, in which airborne transmission was the most plausible explanation for the massive intra-facility spread. Our results underscore the importance of ventilation and air quality for the prevention of future outbreaks in closed facilities.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , Carbon Dioxide , Disease Outbreaks/prevention & control , Humans , Nursing Homes , Respiratory Aerosols and Droplets , Retrospective Studies
20.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1918600

ABSTRACT

Background IgG anti-spike (S) antibodies arise after SARS-CoV-2 infection as well as vaccination. Levels of IgG anti-S are linked to neutralizing antibody titers and protection against (re)infection. Methods We measured IgG anti-S and surrogate neutralizing antibody kinetics against Wild Type (WT) and 4 Variants of Concern (VOC) in health care workers (HCW) 3 and 10 months after natural infection (“infection”, n=83) or vaccination (2 doses of BNT162b2) with (“hybrid immunity”, n=17) or without prior SARS-CoV-2 infection (“vaccination”, n=97). Results The humoral immune response in the “vaccination” cohort was higher at 3 months, but lower at 10 months, compared to the “infection” cohort due to a faster decline. The “hybrid immunity” cohort had the highest antibody levels at 3 and 10 months with a slower decline compared to the “vaccination” cohort. Surrogate neutralizing antibody levels (expressed as %inhibition of ACE-2 binding) showed a linear relation with log10 of IgG anti-S against WT and four VOC. IgG anti-S corresponding to 90% inhibition ranged from 489 BAU/mL for WT to 1756 BAU/mL for Beta variant. Broad pseudoneutralization predicted live virus neutralization of Omicron BA.1 in 20 randomly selected high titer samples. Conclusions Hybrid immunity resulted in the strongest humoral immune response. Antibodies induced by natural infection decreased more slowly than after vaccination, resulting in higher antibody levels at 10 months compared to vaccinated HCW without prior infection. There was a linear relationship between surrogate neutralizing activity and log10 IgG anti-S for WT and 4 VOC, although some VOC showed reduced sensitivity to pseudoneutralization.

SELECTION OF CITATIONS
SEARCH DETAIL